Maptek Data System
Maptek Compute Framework
Maptek Orchestration Environment
Join our early access program to unlock value for your organisation.
Drill & blast management
Interconnected mine scheduling
Reliable proximity awareness underground
Dynamic survey surface updates
3D mine planning & geological modelling
Streamlined geological modelling workflow
Machine learning assisted domain modelling
Material tracking & reconciliation systems
3D laser scanning & imaging
Point cloud processing & analysis
LiDAR-based stability & convergence monitoring
Derive value from airborne or mobile sensor data
I’ve been working in the mine planning space for about 18 years and I’m constantly learning.
Similarly, I’ve found people in mining are very innovative and tend to embrace new techniques and solutions.
However, it seems that in mine planning we are still relying on techniques developed early 20th century.
In general, we are using technology based on the following major works:
Technological limitations meant they were unable to solve complex real-world problems in a reasonable time.
It wasn’t until the 1980s that we started talking about commercial programs that could help solve mine planning problems.
In light of recent computational advances the time has come for us to expand our horizons and embrace new techniques.
The mine planning problem has been classified as an NP-Hard Problem not only because of its complexity to solve but because of the difficulty in evaluating all of the options.
It means it will take an incredibly long time to evaluate all of the options to come up with the optimum.
When you start to think in real world scenarios incorporating non-linear constraints, cutoff grade, number of blocks, equipment and the non-linear interaction between the aforementioned, the problem is not amenable to classical techniques without simplification.
Some people don’t realise the computational complexity of these problems.
In a scenario where you have six pushbacks, 12 benches and 10 periods you have 1.9×1033 combinations and if you want to measure the optimum you have to make sure you actually evaluate all of them.
To solve that issue most of the industry is trying to aggregate the data and simplify the problem, for example by running the problem without a stockpile or with a fixed cut off grade.
Simplification needs to be made due to the complexity and non-linearity of the problem.
A lot of commercial products in the market are based on linear techniques.
In addition to the non-linearity, many operations want to work with stockpiles and blending that adds to the complexity.
As you can see, mine planning is far from a linear system.
A 2019 McKinsey & Company report found that only 20% of surveyed mining and metals projects are completed within parameters predicted during feasibility.
So that means 80% are getting it wrong – that’s huge and means something is not right in the industry.
Is it that mine planners are not making the right assumptions in the feasibility study or our execution is not right?
For the past few years Maptek has been developing an optimisation framework which is based on genetic algorithms at its core.
They are very flexible and try to mimic Darwinian behaviour (i.e. survival of the fittest).
Genetic algorithms are powerful global search algorithms that make no assumptions with regards to objectives, constraints and variable interaction.
By relying on genetic algorithms, Evolution is able to optimise schedules using large models in a reasonable amount of time.
This enables users to maximise the value of deposits without compromising operations and without simplifying data.
As I said at the beginning I’m constantly learning in this industry.
One of the great things that I’ve learned is how computational models can unlock huge value for mine planning incorporating non-linear interactions between objectives, variables and constraints.
All the above enables us to focus more on the result instead of on simplifying the problem so it can fit our techniques.
Eduardo Coloma
Chief Executive Officer
November 28, 2019
For additional information about Maptek, including use of the Maptek logo, product images and reproduction of case studies, please direct inquiries to Global Marketing Communications Manager jane.ball@maptek.com.au
ReCAPTCHA has failed to load! Try reloading the page to submit this form. ReCAPTCHA no se ha podido cargar. Intente volver a cargar la página para enviar este formulario. Não foi possível carregar ReCAPTCHA. Tente recarregar a página para enviar este formulário. Не удалось загрузить ReCAPTCHA. Попробуйте перезагрузить страницу, чтобы отправить эту форму.
We use cookies to enhance your browsing experience and analyse our traffic. By clicking "Accept all", you consent to our use of cookies. You can customise your cookie preferences by clicking 'Customise Preferences'.
We use cookies to enhance your browsing experience and analyse our traffic.
Our website may store cookies on your computer in order to improve and customise your future visits to the website. By using cookies, we can track information about your usage of the site and improve your experience with anonymous and aggregated user data.
Review our Privacy PolicyEssential for the website's functionality, without which the site cannot operate smoothly.
Remember user preferences and choices to provide a more personalized experience.
Collect data on how users interact with the website, helping to improve user experience.
Used to deliver targeted advertisements to users based on their browsing behavior and preferences.